Imagerie de la plaque : critères de vulnérabilité

Laurent Feldman, CHU Bichat, Paris
Déclaration de liens d'intérêt avec la présentation

Intervenant : Laurent Feldman, Paris

☑ Je n'ai pas de lien d'intérêt à déclarer
Imagerie de la plaque vulnérable

- De la physiopathologie à l'imagerie
- Techniques d'imagerie invasives
- Techniques d'imagerie non invasives
- Intérêt de l'imagerie pour le pronostic et le traitement
- Changement de paradigme: de la plaque vulnérable au patient vulnérable
IMAGERIE DE LA PLAQUE VULNERABLE

- De la physiopathologie à l’imagerie
- Techniques d’imagerie invasives
- Techniques d’imagerie non invasives
- Intérêt de l’imagerie pour le pronostic et le traitement
- Changement de paradigme: de la plaque vulnérable au patient vulnérable
Les deux principaux modes de déstabilisation d'une plaque vulnérable

Rupture (60%)

Erosion (30%)
La plaque fibroathéromateuse à chape fine (TCFA): l'archétype de la plaque qui va rompre

Phénotype relativement bien connu

- Necrotic core
- 25% plaque area
- >120° circumference
- 2–22mm long
- Plaque area outward remodeling of vessel
- >50% cross-sectional vascular area
- Vasa vasorum proliferation
- Neointima neovascularization
- RBC leak
- Intraplaque hemorrhage
- Calcification (spotty)
- Fibrous cap attenuated (<65 μm)
- Macrophage infiltration

GRCI 2016
France

Changement de paradigme: émergence de l’érosion

Thrombus
Lipid
Lumen
Fibrous cap
Matrix
Media

Plaque erosion
Lipid poor
Proteoglycan and glycosaminoglycan rich
Non-fibrillar collagen breakdown
Few inflammatory cells
Endothelial cell apoptosis
Secondary neutrophil involvement
Female predominance
High triglycerides

Plaque rupture
Lipid rich
Collagen poor, thin fibrous cap
Interstitial collagen breakdown
Abundant inflammation
Smooth muscle cell apoptosis
Macrophage predominance
Male predominance
High LDL

Phénotype moins bien connu

Libby and Pasterkamp. Eur Heart J 2015;36:2984–2987
L’essentiel des travaux d’imagerie se sont concentrés sur l’identification, la valeur pronostique et le traitement des plaques fibro-athéromateuses à chape fine

Thin Cap Fibroatheroma (TCFA) is the Precursor Lesion of Plaque Rupture

TCFA =
- Lipid rich necrotic core
- Cap = type 1 coll with few SMC
- Thin fibrous cap (<65 um)
- Cap infiltrated by mp and lym
Imagerie de la plaque à haut risque d'érosion?

absence d'endothélium

Movat NC 200 µm
IMAGERIE DE LA PLAQUE VULNERABLE

- De la physiopathologie à l'imagerie
- Techniques d'imagerie invasives
- Techniques d'imagerie non invasives
- Intérêt de l'imagerie pour le pronostic et le traitement
- Changement de paradigme: de la plaque vulnérable au patient vulnérable
La coronarographie peut montrer des plaques thrombotiques déjà rompues (ou érodées)...

SCA ST+ inféro-latéro-basal
Coronarographie en urgence à H2
... mais elle ne montre pas la vulnérabilité des plaques

02-03-2010
- Angor d’effort
- Sténose serrée de la coronaire droite
- ATL coronaire droite
- Absence de sténose serrée proximale de la coronaire gauche

19-10-2010
- SCA ST antérieur
- Occlusion IVA ostiale
- Choc cardiogénique
- Décès
La coronarographie ne montre pas la vulnérabilité des plaques
La coronarographie ne montre pas la vulnérabilité des plaques.
Moralité:
Pour imager la plaque vulnérable il ne faut pas
imager la lumière... mais la
plaque!
Echographie endocoronaire (IVUS)

iLab® Ultrasound Imaging System (Boston Sci.)

iCross™ Coronary Imaging Catheter (Rotational, mechanical system, 40 MHz, axial resolution ≤ 100 µm)
Echographie endocoronaire

- C’est la technique de référence pour mesurer le volume de plaque (plaque burden) et le remodelage
- Permet de voir les plaques rompues
- Mais technique limitée pour évaluer la vulnérabilité de la plaque
Echographie endocoronarienne

- C’est la technique de référence pour mesurer le volume de plaque (plaque burden) et le remodelage.
- Permet de voir les plaques rompues.
- Mais technique limitée pour évaluer la vulnérabilité de la plaque.
Echographie endocoronaire

Valeur pronostique du plaque burden – Données de SATURN

Log-Rank Test P-value = 0.001 for PAV quartile 4 vs. lower quartiles

Cumulative Incidence of MACE (%) vs. Month

<table>
<thead>
<tr>
<th>No. Patients At Risk</th>
<th>Baseline PAV Quartile 1</th>
<th>Baseline PAV Quartile 2</th>
<th>Baseline PAV Quartile 3</th>
<th>Baseline PAV Quartile 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>337</td>
<td>341</td>
<td>341</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>326</td>
<td>326</td>
<td>318</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>326</td>
<td>325</td>
<td>318</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>294</td>
<td>307</td>
<td>312</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>294</td>
<td>300</td>
<td>309</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>278</td>
<td>285</td>
<td>295</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>271</td>
<td>277</td>
<td>290</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>268</td>
<td>265</td>
<td>254</td>
</tr>
</tbody>
</table>

MACE=décès, infarctus, AVC, revascularisation, hospitalisation pour angor instable

Puri et al. Eur Heart J 2013; 34: 3182-3190

GRCI 2016
France
Passion Communication Education
Echographie endocoronaire

- C'est la technique de référence pour mesurer le volume de plaque (plaque burden) et le remodélage
- **Permet de voir les plaques rompues**
- Mais technique limitée pour évaluer la vulnérabilité de la plaque
IVUS: rupture de plaque

- 24 ACS pts
- 50 plaque ruptures (2.08/pt, range 0-6)
- 9 pts (37.5%) had a plaque rupture in the culprit lesion
- **19 pts (79%) had ≥1 plaque rupture in a non-culprit lesion**
- 3 pts (12.5%) had plaque rupture in the 3 major coronary arteries
Echographie endocoronaire

- C'est la technique de référence pour mesurer le volume de plaque (plaque burden) et le remodelage.
- Permet de voir les plaques rompues.
- Mais technique limitée pour évaluer la vulnérabilité de la plaque.
IVUS: critères de vulnérabilité

molle

mixte

calcifiée
IVUS: critères de vulnérabilité
- Anatomie de type TCFA

A

chape fibreuse épaisse
plaque stable?
centre nécrotique peu volumineux

B

chape fibreuse fine
plaque vulnérable?
centre nécrotique volumineux
IVUS: critères de vulnérabilité

- plaque hypoéchogène avec atténuation de l’écho

A. pas d’atténuation
B. atténuation (sans cône d’ombre calcique)
C. vulnérable?

* nécessite une sonde mécanique à 40 MHz

- Une atténuation de l’écho est retrouvée dans 25,6% des SCA (vs. 0 des angors stables)
- Association avec une CRP élevée
- Association avec le no-reflow post-ATL

Lee et al. J Am Coll Cardiol Intv 2009;2:65-72
IVUS: critères de vulnérabilité

- Excentricité
- Remodelage positif
- Calcifications superficielles
- Centre nécrotique hypoéchogène
- Chape fibreuse fine
- Atténuation
- Thrombus
Autres modalités d'échographie endocoronaire

Volume de plaque (plaque burden)

Analyse du spectre de radiofréquence

Composition de la plaque

Garcia-Garcia, Costa and Serruys. Eur Heart J 2010;31:2456
Histologie virtuelle (IVUS-VH)

Volcano s5™ ultrasound imaging system

Eagle Eye™ Platinum coronary imaging catheter (electronic system, 20 MHz, axial resolution ~200 µm)
IVUS-VH: Validation ex vivo

A

Fibreux

Centre nécrotique

Fibro-lipidique

Calcium dense

GRCI 2016
France
Nair et al. Eurointervention 2007;3:113
Nair et al. Circulation 2002;106:2200
Passion Communication Education
Plaque fibroathéromateuse à chape fibreuse fine (TCFA) en IVUS-VH

- Surface de plaque $\geq 40\%$
- Centre nécrotique confluent $> 10\%$
- Chape fibreuse non visible
Principales limites de l’histologie virtuelle:

- Extrapolation in vivo d’une validation ex vivo
- Résolution axiale insuffisante (200-250µm) pour mesurer l’épaisseur de la chape fibreuse
- Distinction ambiguë entre centre nécrotique et calcium dense
- Distinction ambiguë entre fibrose et thrombus
Tomographie de cohérence optique (OCT)

C7-XR™ OCT Intravascular Imaging System

- Near infra-red light
- Frequency-domain OCT
- 54mm-long segments imaged in 2.7 sec at 100 frames/sec
- Images acquired during contrast flush
- Do not require vessel occlusion (≠ time-domain OCT)

C7 Dragonfly Intravascular Imaging Catheter

axial resolution $\sim 15 \mu m$
Une plaquette fibroatheromateuse à chape fine: OCT post-mortem

- Résolution axiale \(\sim 10 \, \mu m \)
- Mesure précisément l'épaisseur de la chape fibreuse (hypersignal): seuil de vulnérabilité 70 \(\mu m \)
- Le centre nécrotique (hyposignal à contour flou) ne peut être mesuré dans sa totalité

Caractérisation des plaques par l’OCT in vivo

A: Artère saine
B: Plaque fibreuse concentrique
C: Plaque fibro-calcique
D: TCFA (Thrombotic Coronary Artery Disease)

Sinclair et al. J Am Coll Cardiol Cardiovasc Img 2014;8:198-209
Erosions de plaque en OCT
Données du registre OCT du Mass General Hospital

Thrombus au contact d'une plaque fibreuse, non rompue

- Homme de 31 ans
- Infarctus du myocarde antérieur sans sus-ST
- Sténose modérée de l'IVA proximale

Passion Communication Education
L'OCT est la meilleure technique pour voir les érosions de plaque

Données du registre OCT du Mass General Hospital

- Plaque Rupture: 55 (44%)
- OCT-Erosion: 39 (31%)
- Definite: 23 (18%)
- Probable: 16 (13%)
- OCT-CN: 10 (8%)
- Others: 22 (17%)

n = 126

Passion Communication Education
Spectroscopie du proche infra-rouge (NIRS)

1st generation InfraReDx NIRS system (Lipiscan)

Waxman et al. J Am Coll Cardiol Img 2009;2:858

Validation in vivo du NIRS – Données de SPECTACL

Principale limite du NIRS = absence d’information anatomique
Imagerie *double modalité*: NIRS-IVUS

True Vessel Characterization (TVC) Imaging System™

infraredx

Sound Insight Into Vascular Disease
Un autre système double modalité OCT-autofluorescence du proche infra-rouge (OCT-NIRAF)

NIRAF NEGATIVE

NIRAF POSITIVE

NIRAF signal = necrotic core at autopsy
IMAGERIE DE LA PLAQUE VULNERABLE

- De la physiopathologie à l'imagerie
- Techniques d'imagerie invasives
- Techniques d'imagerie non invasives
- Intérêt de l'imagerie pour le pronostic et le traitement
- Changement de paradigme: de la plaque vulnérable au patient vulnérable
Caractérisation des plaques coronaires par le scanner: comparaison directe avec l’IVUS-VH

- non-calcifiée
- mixte
- calcifiée
- fibreuse ou fibro-lipidique
- fibroathérome à chape fine
- calcium dense
Caractérisation des plaques coronaires par le scanner: comparaison directe avec l’IVUS-VH

- % of TCFA
 - Non-calcified plaques: 13%
 - Mixed plaques: 32%
 - Calcified plaques: 8%

$p = 0.002$
Caractérisation des plaques coronaires par le scanner: comparaison des lésions coupables des SCA vs. angor stable

Exemple 1: SCA

Remodelage positif

Plaque hypodense (<30 HU*)

*correspond à la densité du centre nécrotique défini en IVUS dans des études précédentes.
Caractérisation des plaques coronaires par le scanner: comparaison des lésions coupables des SCA vs. angor stable

Exemple 2: SCA

Calcifications punctiformes
Caractérisation des plaques coronaires par le scanner: comparaison des lésions coupables des SCA vs. angor stable

Graphique montrant les pourcentages de différents types de calcifications et de remodeling. Les chiffres indiquent les pourcentages de patients avec certaines caractéristiques.

- Positive Remodeling: 12% ACS, 9% SAP
- NCP <30HU: 87% ACS, 79% SAP
- 30HU < NCP < 150HU: 100% ACS, 100% SAP
- Spotty Calcification: 63% ACS, 21% SAP
- Large Calcification: 55% ACS, 22% SAP

Imagerie fonctionnelle: scanner + TEP au 18F-NaF

Cas #1:
SCA ST+
IVA = coupable

Cas #2:
SCA ST-
IVA = coupable
CX = non-coupable

Cas #3:
Angor stable
CD = coupable

Angio
18F-NaF
18F-FDG

GRCI France 2016
Passion Communication Education
Imagerie fonctionnelle: scanner + TEP au 18F-NaF

Captation carotidienne du 18F-NaF IN VIVO

Rupture de plaque carotide et thrombus

Micro-calcifications dans le centre nécrotique

IMAGERIE DE LA PLAQUE VULNERABLE

- De la physiopathologie à l'imagerie
- Techniques d'imagerie invasives
- Techniques d'imagerie non invasives
- Intérêt de l'imagerie pour le pronostic et le traitement
- Changement de paradigme: de la plaque vulnérable au patient vulnérable
A Prospective Natural-History Study of Coronary Atherosclerosis

Gregg W. Stone, M.D., Akiko Maehara, M.D., Alexandra J. Lansky, M.D., Bernard de Bruyne, M.D., Ecaterina Cristea, M.D., Gary S. Mintz, M.D., Roxana Mehran, M.D., John McPherson, M.D., Naim Farhat, M.D., Steven P. Marso, M.D., Helen Parise, Sc.D., Barry Templin, M.B.A., Roseann White, M.A., Zhen Zhang, Ph.D., and Patrick W. Serruys, M.D., Ph.D., for the PROSPECT Investigators*

- Etude prospective chez 697 patients traités par ATL pour SCA suivis 3 ans
- Imagerie des 3 coronaires par IVUS-VH après l’ATL initiale chez 623/697 patients
- Analyse de 128 mètres d’athérosclérose!
- Objectif: critères de vulnérabilité des plaques?
- Critères de jugement: MACE en rapport avec les lésions non coupables du SCA initial

PROSPECT — MACE

MACE = décès, arrêt cardiaque, infarctus, ou hospitalisation pour angine de poitrine « accélérée »

<table>
<thead>
<tr>
<th>Event</th>
<th>Events Related to Culprit Lesions</th>
<th>Events Related to Nonculprit Lesions</th>
<th>Indeterminate Events</th>
<th>All Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite cardiac events†</td>
<td>12.9 (83)‡</td>
<td>11.6 (74)</td>
<td>2.7 (17)</td>
<td>20.4 (13)</td>
</tr>
<tr>
<td>Death from cardiac causes, cardiac arrest, or myocardial infarction</td>
<td>2.2 (14)</td>
<td>1.0 (6)</td>
<td>1.9 (12)</td>
<td>4.9 (31)</td>
</tr>
<tr>
<td>Death from cardiac causes</td>
<td>0.2 (1)</td>
<td>0</td>
<td>0.4 (11)</td>
<td>1.9 (12)</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>0.3 (2)</td>
<td>0</td>
<td>0.2 (1)</td>
<td>0.5 (3)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>2.0 (13)</td>
<td>1.0 (6)§</td>
<td>0.3 (2)</td>
<td>3.3 (21)</td>
</tr>
<tr>
<td>Rehospitalization for unstable or progressive angina</td>
<td>11.5 (74)</td>
<td>10.8 (69)</td>
<td>0.8 (5)</td>
<td>17.5 (113)</td>
</tr>
<tr>
<td>Other events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revascularization</td>
<td>10.9 (70)</td>
<td>10.5 (67)</td>
<td>0</td>
<td>17.1 (110)</td>
</tr>
<tr>
<td>Stent thrombosis¶</td>
<td>2.0 (13)</td>
<td>1.3 (8)</td>
<td>3.3 (21)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Kaplan–Meier Estimates for Cumulative Rates of Major Adverse Cardiovascular Events at 3 Years.

PROSPECT — Facteurs prédictifs des MACE

<table>
<thead>
<tr>
<th>Correlates</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors of patient-level events†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin-requiring diabetes</td>
<td>3.32 (1.43–7.72)</td>
<td>0.005</td>
</tr>
<tr>
<td>Previous percutaneous coronary intervention</td>
<td>2.03 (1.15–3.59)</td>
<td>0.02</td>
</tr>
<tr>
<td>Predictors of events at individual lesion sites‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaque burden ≥70%</td>
<td>5.03 (2.51–10.11)</td>
<td><0.001</td>
</tr>
<tr>
<td>Thin-cap fibroatheroma</td>
<td>3.35 (1.78–6.36)</td>
<td><0.001</td>
</tr>
<tr>
<td>MLA ≤4.0 mm²</td>
<td>3.21 (1.61–6.42)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Passion Communication Education
PROSPECT — Valeur prédictive positive d’une TCFA?

- TCFA (all): 4.9 (1.3)
- TCFA + MLA ≤ 4 mm²: 10.2 (1.7)
- TCFA + PB ≥ 70%: 16.4 (1.7)
- TCFA + PB ≥ 70% + MLA ≤ 4 mm²: 18.2 (1.9)

Lesion hazard ratio (95% CI): 3.90 (2.25 – 6.76) 6.55 (3.43 – 12.51) 10.83 (5.65 – 21.10) 11.05 (4.39 – 27.82)

P value: < 0.001 < 0.001 < 0.001 < 0.001

Prevalence (%): 46.7 15.9 10.1 4.2

Passion Communication Education
PROSPECT — CONCLUSIONS & LIMITES

- Complexité de l'analyse des images d'IVUS-VH
- La moitié des plaques qui ont provoqué un événement n’avaient pas été imagées (trop distales)
- Les « événements » étaient essentiellement des angors accélérés (11%), seulement 1% d’infarctus, aucun décès
- Les phénotypes à « haut risque » ont une très faible valeur prédictive positive: 95% des TCFA ne provoqueront aucun événement à 3 ans!
- L’IVUS-VH des 3 coronaires n’est pas sans risque (1,6% de complications vasculaires, 0,4% d’infarctus non mortels)

PROSPECT—CONCLUSIONS

- Chez 697 patients suivis pendant 3 ans après un SCA
- L'analyse en IVUS-VH des 3 coronaires (128 mètres d'athérosclérose!)
- Permet d'identifier 55 plaques à haut risque non coupables du SCA initial qui vont entrainer un MACE à 3 ans
- 51 autres plaques entraineront un MACE mais auront échappé à l'IVUS-VH (trop distales)
- Les MACE seront essentiellement des « angors accélérés nécessitant une revascularisation » (10,8%) et seulement 1% d'infarctus (aucun décès)
- Les critères de « haut risque » en IVUS-VH (TCFA, PB≥70%, MLA ≤4mm²) ont une faible valeur prédictive positive (4,9 à 18,2%): 72% des plaques ayant les 3 critères n'entraineront pas de MACE!
- L'analyse des 3 coronaires en IVUS-VH n'est pas sans risque: 1,6% de complications graves chez 11 patients (surtout des dissections coronaires à l'origine 0,4% d'infarctus non mortels

Pourquoi le dépistage des plaques vulnérables est-il aussi peu prédictif des syndromes coronaires aigus?

- Trouver la plaque vulnérable c'est trouver une aiguille dans une meule de foins
- Imagerie sous-optimale des plaques à haut risque de rupture (« fausses TCFA »)
- Imagerie inexistante des plaques à haut risque d'érosion
- La vulnérabilité est une notion dynamique
Distribution spatiale des plaques évoluées

Fréquence des plaques évoluées

Ruptured plaque 1.2%
TCFA 1.5%
MCFA 1.1%
ThCFA 9.4%

Intimal thickening and other non-atheromatous vessel pathology 86.9%

Cheruvu, Finn, Goldstein, Stone, Virmani and Muller. J Am Coll Cardiol 2007;50:940
Pourquoi le dépistage des plaques vulnérables est-il aussi peu prédictif des syndromes coronaires aigus?

- Trouver la plaque vulnérable c’est trouver une aiguille dans une meule de foin.
- Imagerie sous-optimale des plaques à haut risque de rupture (« fausses TCFA »).
- Imagerie inexistante des plaques à haut risque d’érosion.
- La vulnérabilité est une notion dynamique.
Analyse combinée par IVUS-VH et OCT

Ceci n'est pas une TCFA (épaisseur de la chape fibreuse = 90 μm en OCT)

%plaque-volume: 47.6%
%necrotic-core: 15%
Angle of the major NCCL 15.3°
Angle of the total NCCL 35.8°

Cap thickness: 90 μm

(C)
Definite-TCFA

%plaque-volume: 55.8%
%necrotic-core: 22%
Angle of the major NCCL 24.8°
Angle of the total NCCL 100.3°

Cap thickness: 40 μm

Une vraie TCFA pour en IVUS-VH et en OCT (épaisseur de la chape fibreuse = 40 μm en OCT)

2016 © GRCI, Tous droits réservés. Toute reproduction même partielle est interdite.
Pourquoi le dépistage des plaques vulnérables est-il aussi peu prédicatif des syndromes coronaires aigus?

- Trouver la plaque vulnérable c’est trouver une aiguille dans une meule de foin
- Imagerie sous-optimale des plaques à haut risque de rupture (« fausses TCFA »)
- Imagerie inexistante des plaques à haut risque d’érosion
- La vulnérabilité est une notion dynamique
Pourquoi le dépistage des plaques vulnérables est-il aussi peu prédictif des syndromes coronaires aigus?

- Trouver la plaque vulnérable c'est trouver une aiguille dans une meule de foin.
- Imagerie sous-optimale des plaques à haut risque de rupture ("fausses TCFA").
- Imagerie inexistante des plaques à haut risque d'érosion.
- La vulnérabilité est une notion dynamique.
75% of TCFA → thick-cap FA
25% of TCFA → TCFA
10% of PIT → TCFA
6% of thick-cap FA → TCFA
Observation chez un même patient de l’évolution de plaques « vulnérables » sur 6 ans

- Rupture asymptomatique puis cicatrisation
- TCFA asymptomatique persistante
- TCFA asymptomatique puis fibreuse
- Progression d’une plaque vers une sténose serrée nécessitant un stent
- Progression d’une plaque vers une sténose serrée nécessitant un stent
ATHEROREMO-NIRS

- Single-center study (external validation required)
- Small sample size and corresponding number of events (larger studies required)
- Majority of the endpoints were unplanned revascularization (future studies with a higher incidence of mortality and nonfatal ACS required)
- Cutoff value was based on the median LCBI value (validation of best cutoff required)

The study did not evaluate a lesion-specific risk (studies with 3-vessel NIRS imaging at index angiography and follow-up coronary angiography or autopsy at the moment of an endpoint required)
Lipid-Rich Plaque Study (NIRS-IVUS)

One of the Most Important Global Healthcare Studies of this Generation Reaches Significant Patient Enrollment Milestone

1,000 patients enrolled marks milestone in study that has potential to reveal breakthrough correlations between Lipid-Rich Plaques and occurrence of heart attacks

Burlington, Mass. — April 27, 2015 — Infraredx, Inc., an intravascular imaging company committed to advancing the diagnosis and management of coronary artery disease, today announced the enrollment of 1,000 patients in the Lipid-Rich Plaque (LRP) Study. The LRP Study is a prospective, multi-center clinical trial designed to identify a correlation between lipid-rich plaques detected by Infraredx’s TVC Imaging System™ and the occurrence of a cardiac event within two years. The first-in-class dual-modality intravascular imaging system integrates near-infrared spectroscopy (NIRS) with intravascular ultrasound (IVUS) technology, allowing clinicians the ability to assess vessel structure and plaque composition. The TVC Imaging System is FDA-approved to identify lipid-core plaques that may cause heart attacks. Identification of such plaques would be a major step toward the development of percutaneous coronary intervention (PCI) as a means to prevent coronary events.

ClinicalTrials.gov Identifier: NCT02033694, results due in 2018
PROSPECT II Study
PROSPECT ABSORB RCT

900 pts with ACS after successful PCI

3 vessel IVUS + NIRS (blinded)

1 IVUS lesion with 70% plaque burden present?

Yes (N=300)

No (n=600)

ABSORB BVS + GDMT (N~150)

ABSORB BVS + GDMT (N=150)

Routine angio/3V IVUS-NIRS FU at 2 years

Clinical FU for 3 years

Columbia University Medical Center
NewYork-Presbyterian
Managing patients at risk of acute coronary events mandates a greater focus on the atherosclerotic disease burden rather than on features of individual plaques.
IMAGERIE DE LA PLAQUE VULNERABLE

- De la physiopathologie à l'imagerie
- Techniques d'imagerie invasives
- Techniques d'imagerie non invasives
- Intérêt de l'imagerie pour le pronostic et le traitement

Changement de paradigme: de la plaque vulnérable au patient vulnérable
pan-vulnerability: coronary, carotid, aorta, etc.

inflammation
ROS
prothrombotic state
OMICS
etc.

ischemia
arrhythmia
low ejection fraction
etc.
Patient de 47 ans, SCA ST-tn+
ATL IVA
Imagerie multimodalité

<table>
<thead>
<tr>
<th>Artères coronaires (IVUS-VH)</th>
<th>Aorte thoracique (TDM-TEP 18FDG)</th>
<th>Carotide gauche (TDM-TEP 18FDG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVC ischémique gauche 1 an plus tard!
Patiente de 65 ans, angor stable
ATL CX
Imagerie multimodalité

Arteres coronaires
(IVUS-VH)

IVA

CD

Aorte thoracique
(TDM-TEP 18FDG)
Etude BIOIMAGE

7687 sujets sains, Humana Health Care Plan (Chicago, IL et Fort Lauderdale, FL)

- enquête téléphonique (n=865)
- Framingham-like (n=718)
- imagerie multimodalité (n=6104)

Facteurs de risque + biomarqueurs + imagerie simple (CAC score, écho carotide et aorte abdo, IPS)

≥1 test anormal

Imagerie avancée (coroscanner, ARM aorto-carotidien, 18FDG TEP-TDM aorto-carotidien)

SUIVI 3 ANS

Objectif: 600 événements

EVENEMENTS ATHEROTHROMBOTIQUES MAJEURS

Muntendam, McCall, Sanz, Falk & Fuster. Am Heart J 2010;160:49-57 e1
CONCLUSIONS:

- Multiples techniques d'imagerie disponibles pour dépister les plaques à haut risque de rupture (TCFA)
- Absence d'imagerie de la plaque à haut risque d'érosion
- Intérêt pronostique du dépistage de la plaque vulnérable?
 Faible valeur prédictive positive
- Intérêt du dépistage non-invasif du « patient vulnérable » par l'imagerie non-invasive?
- Pas d'indication actuellement à dépister la plaque vulnérable en pratique clinique
- Poursuivre l'effort de recherche (multimodalité, couplage anatomie/fonction, imagerie moléculaire...)